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Abstract. T cells are key mediators of both humoral and cellular adaptive immune responses, and their role in Parkinson’s
disease (PD) is being increasingly recognized. Several lines of evidence have highlighted how T cells are involved in both
the central nervous system and the periphery, leading to a profound imbalance in the immune network in PD patients. This
review discusses the involvement of T cells in both preclinical and clinical studies, their importance as feasible biomarkers
of motor and non-motor progression of the disease, and recent therapeutic strategies addressing the modulation of T cell
response.

12

13

14

15

16

17

Keywords: Parkinson’s disease, T cells, CD4 + T cells, CD8 + T cells, neuroinflammation, peripheral immunity18

INTRODUCTION19

There is growing evidence suggesting the crucial20

involvement of T cells in Parkinson’s disease (PD). T21

cells are essential mediators of humoral and cellular22

adaptive immune responses: highly specific receptor-23

mediated clonal selection and expansion of T cells24

allow both antigen-specific immunity and immuno-25

logical memory against known pathogens [1]. It is26

known that the precursors of T cells migrate to27

the thymus and develop into two distinct subsets,28

CD4 + and CD8 + cells, according to their peculiar29

surface markers. Before their activation, T cells are30

in the naı̈ve condition, and once in the circulation can31

interact with antigen-presenting cells displaying for-32

eign or self-antigens. Previous studies have shown33

that T cells play a key role both in the central ner-34

vous system (CNS) and in the periphery, leading to35
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a profound imbalance in the immune network of PD 36

patients. 37

EVIDENCE OF T CELL INVOLVEMENT 38

FROM ANIMAL MODELS AND 39

NEUROPATHOLOGY: MORE CD4 + THAN 40

CD8+? 41

In �-synuclein overexpression animal models, 42

early infiltration of both CD4 + and CD8 + T cells 43

was observed [2], and T cells enhanced the number 44

of �-synuclein aggregates by promoting a pro- 45

inflammatory M1 phenotype in CNS myeloid cells 46

[3]. The crucial role of T cells was further supported 47

by the examination of postmortem human PD brains: 48

Brochard et al. found CD8 + and CD4 + T cells, but 49

not B cells, either in close contact with blood ves- 50

sels or near melanized dopamine-containing neurons 51

[4]. Interestingly, T cell-mediated dopaminergic tox- 52

icity was almost exclusively arbitrated by CD4 + T 53

cells [4], as also confirmed in a neurotoxic-driven 54

animal model [5] and from in vitro and in vivo 55
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data [6]. Furthermore, in �-synuclein overexpres-56

sion models, the genetic deletion of T cell receptor57

(TCR)� or CD4, as well as the use of the immunosup-58

pressive drug fingolimod, reduced the CNS myeloid59

major histocompatibility complex (MHC)II response60

to �-synuclein, whereas the authors did not observe61

after the knockout of CD8 + T cells any significant62

effect on preventing the myeloid MHCII response63

or dopaminergic neuronal loss [7]. The interaction64

between CD8 + T cells and MHCI on neurons was65

also assessed, reporting increased MHCI expression66

in and around virally transduced neurons (including67

dopamine neurons) and in CNS myeloid cells, but not68

astrocytes [7].69

�-SYNUCLEIN-SPECIFIC T CELL70

RESPONSES71

A seminal study by Sulzer et al. explored whether72

T cells recognize epitopes derived from �-synuclein73

and found that the Y39 and S129 regions act as74

epitopes [8]. More in detail, epitopes derived from75

the Y39 region were displayed by two MHC class76

II beta chain alleles as well as an additional MHC77

class II allele and an MHC class I allele, with an78

immune response mostly mediated by interleukin79

(IL-5)-secreting CD4 + T cells and interferon (IFN)�80

CD8 + cytotoxic T cells [8]. Furthermore, it was81

reported that �-synuclein-specific T cell activation82

was predominant in early-stage PD [9].83

EVIDENCE OF T CELL INVOLVEMENT84

FROM ANIMAL MODELS AND85

NEUROPATHOLOGY: MORE CD8 + THAN86

CD4+?87

Even though several lines of evidence point to the88

crucial role of CD4 + T cells in the pathogenesis of89

PD, the involvement of CD8 + T cells should be high-90

lighted as well.91

Firstly, it is known that dopamine neurons can92

express MHCI in response to IFN-�, which makes93

them susceptible to cell death by cytotoxic CD8 + T94

cells [10]. In an experimental PINK1-/- mouse95

model of PD, the authors hypothesized that intesti-96

nal infection may act as the precipitating event in the97

establishment of a cytotoxic mitochondria-specific98

response both in the periphery and the brain [11].99

Based on neuropathological evidence, a recent study100

[12] assessed T cell infiltration in human substan-101

tia nigra pars compacta (SNc) throughout different102

PD stages (one group with �-synuclein aggregates 103

only in the olfactory bulb representing the earliest 104

stage of the disease and the second group with �- 105

synuclein aggregates in the SN). Nigral cytotoxic 106

CD8 + T cell infiltration was robust in the earliest 107

stage of the disease when no �-synuclein aggregation 108

and dopaminergic neuronal death were present yet, 109

whereas in the next stage neuronal loss was accom- 110

panied by a milder CD8 + T cell infiltration, thus 111

suggesting that CD8 + T cell-mediated attack may 112

trigger neuronal death and synucleinopathy. 113

CHANGES OF PERIPHERAL CD4 + AND 114

CD8 + T CELLS IN PD PATIENTS 115

It is conceivable that the alteration of T cells in 116

the CNS is mirrored in the periphery, likely as a 117

consequence of blood-brain barrier disruption in PD 118

patients [13]. 119

Regarding CD8 + T cells, recent research by Yan 120

et al. suggested that naı̈ve CD8 + T cells were sig- 121

nificantly decreased in the peripheral blood of PD 122

patients, whereas IFN-�–producing CD8 + T cells 123

were increased [14]. An increase in peripheral 124

CD8 + T cells was similarly observed in other studies 125

[15, 16], but conflicting evidence detecting no signif- 126

icant differences compared with healthy controls was 127

reported as well [17–19]. Another group [20] showed 128

a reduction in CD8 + terminally differentiated effec- 129

tor memory re-expressing CD45RA (TEMRA) cells 130

and a lower expression of the cell-aging marker p16, 131

suggesting an attenuated shift towards CD8 + T cells 132

senescence at the earliest stages of PD. 133

Furthermore, several studies found reduced levels 134

of circulating CD3 + and CD4 + T cells [15, 16, 19, 135

21, 22]. A meta-analysis including 21 case-control 136

studies and 943 PD patients confirmed that the num- 137

bers of CD3 + and CD4 + T cells were significantly 138

decreased in PD [23]. In contrast with these results, 139

another study found that PD patients had an increase 140

in the percentage of CD3 + and CD4 + T s and the 141

CD4 + /CD8 + ratio [24], whereas other groups did 142

not find any significant difference in the percentage 143

of both CD4 + and CD8 + between PD patients and 144

controls [17, 18, 25]. Undoubtedly, the composition 145

of peripheral T cells from PD patients in the reported 146

studies was quite heterogeneous, which could be 147

explained by the influence of ethnic variations 148

or other relevant disease-related confounders. For 149

example, a study by Bhatia et al. found that many fac- 150

tors, including age, sex, disease duration, and disease 151
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severity were associated with variations in T cell152

pathology, with disease severity being the most sig-153

nificant one [26].154

Different CD4 + T cell subsets orchestrate155

specific immune functions156

Concerning CD4 + T cells, specific subsets are157

known to orchestrate different immune functions158

[27]: T helper (Th)1 and Th17 target bacterial159

and viral pathogens mainly through the release of160

IFN-�, IL-17A, IL-21, and other pro-inflammatory161

cytokines. Th2 activity is focused on parasitic and162

allergic responses, in particular through IL-4, IL-5,163

and IL-13, which act as anti-inflammatory cytokines.164

Regulatory T cells (Tregs) modulate T cell activation165

and inflammation.166

Imbalance of peripheral CD4 + T cell subsets in167

PD: Th1 and Th17168

Chen et al. [21] observed in the peripheral blood169

of PD patients an increased proportion of circulat-170

ing Th1 and Th17 cells and a decreased number of171

Th2 and Tregs. Compared with the control group,172

the Th1/Th2 and Th17/Treg ratios were significantly173

increased with a shift towards Th1 and Th17 sub-174

sets. The prominent role of pro-inflammatory Th1175

and Th17 was further supported in a 1-methyl-4-176

phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of177

PD: naı̈ve CD4 + T cells treated with �-synuclein178

showed a polarization towards the Th1 or Th17179

phenotype, thus causing cell death of dopaminergic180

neurons in the SN and exacerbating MPTP-induced181

cell death [5].182

It was shown that Th1 cells may be relevant in the183

altered immune network of PD. This subgroup dif-184

ferentiates under the influence of IFN-� and IL-12185

released by antigen-presenting cells, and the release186

of Th1-derived pro-inflammatory cytokines is crucial187

for the activation of B cells and the phagocytosis of188

microbes [28]. Intriguingly, in PD patients, the shift189

towards Th1 cells was associated with motor function190

scores as assessed through the Unified Parkinson’s191

Disease Rating Scale (UPDRS)-part III [21]. Kustri-192

movic et al. reported no significant correlations193

between circulating CD4 + T cells, dopamine recep-194

tor (DR) expression, transcription factors mRNA195

levels, and demographic and clinical features of PD196

patients [22]. Nonetheless, the shift towards Th1197

lineage was confirmed in both drug-naı̈ve and drug-198

treated patients, and was associated with profound199

modifications of transcription factor genes expression 200

and increased production of IFN-� and tumor necro- 201

sis factor (TNF)-�. Modifications of the transcription 202

factors network in CD4 + T cells occur early in PD, 203

and the absence of correlations with patients’ charac- 204

teristics suggests that the alteration of CD4 + T cell 205

differentiation mechanisms is independent of PD pro- 206

gression and severity and antiparkinsonian treatment 207

[22]. The imbalance in CD4 + T cells transcription 208

factors could be of great interest since it represents 209

a peculiar molecular signature shared by idiopathic 210

REM sleep behavior disorder and PD patients [29] as 211

well as potential biomarkers of motor complications 212

[30]. 213

The pro-inflammatory bias could be promoted 214

by the Th17 subpopulation as well. This specific 215

subset is mainly involved in host defense against 216

extracellular pathogens and plays a central role in 217

the pathophysiology of several autoimmune diseases 218

through the production of IL-17, IL-17F, IL-21, IL- 219

22, and granulocyte-macrophage colony-stimulating 220

factor (GM-CSF) [31]. Increased levels of Th17 221

in early-stage PD patients were reported in several 222

studies [14, 21, 32], even though conflicting results 223

observing no differences or reduced levels of Th17 224

cells were described as well [22, 33]. A recent study 225

also found that there were significant correlations 226

between Th17 cells and the subscales I and II of the 227

MDS-UPDRS [14]. 228

Regarding in vitro evidence and animal mod- 229

els, the critical role of Th17-driven inflammation 230

was further explored in a recent work [6] employ- 231

ing autologous co-cultures of activated T cells and 232

induced pluripotent stem cells (iPSC)-derived mid- 233

brain neurons of 10 PD patients and 10 controls. 234

After co-culture with T cells or the addition of IL- 235

17, PD iPSC-derived midbrain neurons underwent 236

increased neuronal death driven by upregulation of 237

IL-17 receptor (IL-17R), whereas blockage of IL-17 238

or IL-17R prevented neuronal death. Furthermore, the 239

co-culture of MPTP-treated neurons with Th17 cells 240

further exacerbated neuronal cell death and increased 241

IL-1� and TNF-� levels [34]: Liu et al. found 242

that these effects were mediated via lymphocyte 243

function-associated antigen 1 (LFA-1) and intracellu- 244

lar adhesion molecule-1 (ICAM-1), and the blocking 245

of either LFA-1 in Th17 cells or ICAM-1 in ven- 246

tral mesencephalic neurons abolished Th17-induced 247

dopaminergic neuronal death. Taken together, these 248

results suggest that counteracting Th17 develop- 249

ment could represent a feasible therapeutic option 250

in PD. The restriction of Th17 development and 251
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differentiation can be achieved through different252

compounds, for example, the peroxisome prolifer-253

ator-activated receptor-gamma [35], or through the254

reduction of transcription factors ROR�t and STAT3255

via cytokines such as IL-4 or IL-32 [31].256

Imbalance of peripheral CD4 + T cell subsets in257

PD: Th2 and Tregs258

The prevalence of a pro-inflammatory phenotype259

in PD is also favored by an altered anti-inflammatory260

response promoted by Th2 and Treg cells. Th2 cells261

differentiate from naı̈ve T cells under the influence262

of IL-4 and the activation of the GATA3 and STAT6263

transcription factors. The cytokines most typically264

associated with Th2 cells are IL-4, IL-5, IL-9, and IL-265

13, and combinations of these cytokines drive B cell266

proliferation and immunoglobulin class-switching to267

immunoglobulin E (IgE), eosinophilia, mastocytosis,268

and macrophage polarization to an M2-like phe-269

notype [36]. Several studies have observed lower270

absolute numbers and frequency of Th2 cells in271

PD compared with healthy controls [15, 22], with272

increased mRNA levels of both GATA3 and STAT6273

[22]. Interestingly, increased levels of STAT6 were274

also reported in PD patients with motor fluctuations275

[30], suggesting the suitable targeting of Th2 cells276

in the complex stage of the disease. On the other277

side, Alvarez-Luquin et al. demonstrated no signif-278

icant difference in Th2 cell counts in PD patients279

compared with controls, even though a significant280

increase in IL-13 levels was observed [33], and also281

significantly increased levels of IL-4-producing Th2282

have been recently reported [14].283

Regulatory T cells (Tregs) represent another T284

cell subset possibly involved in the disruption of285

immune mechanisms. Tregs are responsible for the286

preservation of immune tolerance and inhibition of287

autoimmunity. They act as negative regulators of288

inflammation [37] through the secretion of anti-289

inflammatory cytokines, in particular IL-10 and290

TGF-�, and express granzyme A to kill effector cells291

in a perforin-dependent manner [38]. It was previ-292

ously reported that PD patients display an impaired293

ability to suppress effector T cell function [39] and294

reduced absolute numbers of Tregs have been found295

as well [15, 22, 33]. Intriguingly, dysregulation of the296

Treg compartment was also associated in PD patients297

with crucial non-motor symptoms, such as cognitive298

impairment [40] and constipation [41].299

Concerning animal studies, Reynolds et al. demon-300

strated a neuroprotective role for Tregs in the MPTP301

mouse model of PD: the adoptive transfer of CD3- 302

activated Tregs to MPTP-intoxicated mice protected 303

the nigrostriatal system in a dose-dependent manner 304

[42], probably by attenuating Th17-mediated neu- 305

rodegeneration [5]. Also in the MPTP mouse model 306

examined by Li et al., Treg transfer along with anti- 307

TNF� antibody administration increased Tregs and 308

reduced Th1 cells leading to an amelioration of PD 309

severity [43]. 310

Alterations of CD8 + and CD4 + T cells in PD are 311

summarized in Table 1 and Fig. 1. 312

Imbalance of peripheral CD4 + T cell subsets in 313

PD: role of dopaminergic treatment 314

Several works have also explored whether 315

dopaminergic drugs may play a significant role in reg- 316

ulating lymphocyte subsets in PD. Kustrimovic et al. 317

[22, 44] did not suggest relevant effects of antiparkin- 318

sonian treatment on the peripheral immune system of 319

PD patients. Similarly, Chen et al. found a weak asso- 320

ciation between the percentage of CD4 + T cells and 321

the levodopa equivalent daily dose [24]. In another 322

study [45], the negative correlation between the lev- 323

els of T cytotoxic cells 1 (CD8 + Tbet+IFN-�+) and T 324

cytotoxic cells 2 (CD8 + GATA3 + IL-13+) with the 325

Hoehn and Yahr scale score was observed only in 326

patients receiving treatment with levodopa, thus sug- 327

gesting that levodopa could affect T cytotoxic cells. 328

Furthermore, it should be noticed that human and 329

murine lymphocytes express all the five subtypes of 330

DR, and the DRD2 agonist sumanirole was able to 331

inhibit the shift to the Th1 and Th17 phenotypes of 332

CD4 + T cells obtained from MPTP-intoxicated mice 333

[46]. 334

T CELL IMMUNITY AND GUT 335

MICROBIOTA 336

Whether the peculiar immune profile observed 337

in PD patients arises from the periphery, favoring 338

subsequent neuroinflammation, or is a consequence 339

of peripheral leakage of CNS-derived antigens, has 340

not been fully clarified. Among peripheral sources, 341

intestinal immune activation and dysbiosis could rep- 342

resent one potential driver of PD inflammatory state. 343

There is increasing research interest in the gut-brain 344

axis: several studies have suggested in PD an asso- 345

ciation between gastrointestinal inflammation and 346

the accumulation of �-synuclein in the enteric ner- 347

vous system [47]. Moreover, a relationship between 348

inflammatory bowel diseases (IBD) and PD has been 349
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Fig. 1. Central and peripheral involvement of T cells in PD. Naı̈ve CD4 + and CD8 + T lymphocytes are activated in the periphery after the
interaction with antigen-presenting cells. CD4 + T cells then differentiate into pro-inflammatory (Th1, Th17) or anti-inflammatory (Th2,
Treg) subtypes, characterized by the release of specific patterns of cytokines. Activated T cells can reach the central nervous system by
crossing an altered blood-brain barrier, thus polarizing resident cells to pro-inflammatory or anti-inflammatory phenotypes. In particular, Th1
and Th17 subsets release pro-inflammatory molecules (TNF-�, IFN-�, IL-17, IL-21, IL-22), which, in concert with other mechanisms, lead
to neuronal damage and death. Detrimental pro-inflammatory pathways are indicated with red lines. Figure created with BioRender.com.

reported [48, 49], and a recent study showed a signif-350

icant reduction in the risk of developing PD in IBD351

patients receiving early treatment with anti-TNF-�352

therapy [50].353

Regarding animal models, chronic mild focal354

intestinal inflammation accelerated brain neu-355

ropathology and motor dysfunction in �-synuclein356

mutant mice [51]. Additionally, when �-synuclein357

overexpressing mice were colonized with microbiota358

from PD patients, enhanced physical impairment and359

neuroinflammation were observed compared with360

microbiota transplants from healthy human donors361

[52].362

It was shown that PD patients display an363

altered composition of several gut microbiome taxa364

[53]. Among these, Lactobacillaceae may induce365

Th1-type immune responses [54], whereas Prevotel-366

laceae abundance was associated with augmented367

Th17-mediated mucosal inflammation [55]. Another368

study evaluating fecal DNA samples from 69 PD369

patients and 244 controls reported that, among the370

microbiota-associated epitopes involved in inflam-371

matory pathways, two were involved in T cell372

responses [56]. Based on these observations, it could373

be speculated that T cell-related immunity, triggered 374

by the aggregation of �-synuclein in the gut mucosa, 375

may promote further CNS neuroinflammation and 376

neurodegeneration. Nonetheless, the complex inter- 377

action between intestinal mechanisms, the enteric 378

nervous system, the immune system, the CNS, and 379

environmental factors, is yet to be fully elucidated. 380

THE CONNECTION BETWEEN PD 381

GENETIC FACTORS AND T CELLS 382

Finally, in this complex scenario, genetic fac- 383

tors should be considered as well: the association 384

between human leukocyte antigen genes and PD was 385

explored in several studies [57, 58] and a large- 386

scale meta-analysis including more than 100,000 387

subjects [59]. Other lines of evidence found that 388

the knockout of the �-synuclein gene affected IL- 389

2 production by CD4 + T cells and the frequency of 390

Tregs in mice [60]. The role of �-synuclein defi- 391

ciency in promoting a pro-inflammatory immune 392

response was also observed in experimental autoim- 393

mune encephalomyelitis models of multiple sclerosis 394
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Table 1
Summary of peripheral T changes in PD patients

Peripheral blood alterations of T cells in PD

Finding Population Nation Reference

↓ Naı̈ve CD4 + and naı̈ve CD8 + T lymphocytes 41 treated PD patients, 40 HC USA [14]
↓ CD3 + and CD4 + T lymphocytes, no difference 127 treated PD patients, 148 HC China [19]

in CD8 + T lymphocytes
32 drug-naı̈ve PD patients, 20 HC Mexico [33]

↓ CD4 + T lymphocytes 60 treated PD patients, 40 HC China [21]
26 drug-naı̈ve and 56 treated PD Italy [22]

patients, 47 HC
↓ CD4 + and ↑ CD8 + T lymphocytes 33 treated PD patients, 34 HC Japan [15]
↑ CD3 + and CD4 + T lymphocytes, no difference 761 treated PD patients, 761 HC China [24]

in CD8 + T lymphocytes
No difference in CD4 + and CD8 + T lymphocytes 10 treated PD patients, 13 HC Germany [17]

268 PD patients, 268 HC China [18]
40 treated PD patients, 25 HC Brazil [25]

↑ Th1 and Th17, ↓ Th2 and Treg 60 treated PD patients, 40 HC China [21]
↑ Th1, ↓ Th2, Th1/17, Th17, Treg 26 drug-naı̈ve and 56 treated PD Italy [22]

patients, 47 HC
↑ Th17, Th2, no differences in Th1 and Treg 41 treated PD patients, 40 HC USA [14]
↓ Th2 and Treg, no difference in Th1 20 treated PD patients, 20 HC Japan [15]
↑ Th17 18 drug-naı̈ve PD patients and 18 HC China [32]
↓ suppressor Treg, active Treg, type-1 regulatory T cells; 32 drug-naı̈ve PD patients, 20 HC Mexico [33]

no difference in Th1, Th2, Th17

[61, 62]. The LRRK2 G2019S gene altered myeloid395

cell differentiation in transgenic rats, leading to396

decreased Th17 cell activity [63]. Furthermore,397

PINK1–/– T cells exhibited a reduced suppressive398

function despite normal FoxP3 expression kinetics399

[64]. A recent study [11] reported that the intestinal400

infection with gram-negative bacteria in PINK1–/–401

mice leads to autoimmune mechanisms eliciting402

cytotoxic mitochondria-specific CD8 + T cells, thus403

highlighting the role of PINK1 as a repressor of404

the immune system and supporting the relevance405

of the gut-brain axis as a triggering event in PD.406

Taken together, these results provide evidence that407

PD-associated genetic mutations could influence the408

immune network and suggest that specific subsets of409

patients with a genetic predisposition could be more410

suitable for immune-targeted therapies.
411

FUTURE PERSPECTIVES412

A deeper understanding of the peripheral immune413

system in PD has widened research avenues to414

explore whether it is a suitable target for disease-415

modifying therapies. In particular, the possibility416

of immune escape mechanisms in PD has built417

the premise of re-establishing immunological toler-418

ance as a key strategy. In this context, compounds419

acting on the Treg compartment, i.e., vasoactive420

intestinal peptide (VIP), pituitary adenylate cyclase- 421

activating polypeptide (PACAP), and GM-CSF, have 422

been explored in recent literature [65]. VIP-receptor 423

2 peptide agonist (LBT-3627) attenuated neuroin- 424

flammation by promoting the restoration of Treg 425

activity in both 6-hydroxydopamine (6-OHDA) and 426

�-synuclein overexpression rat models [66]. Sim- 427

ilarly, PACAP exerted a neuroprotective effect in 428

the rotenone-induced snail and 6-OHDA-induced rat 429

models of PD. [67]. The adoptive transfer of GM- 430

CSF-induced Tregs to MPTP mice was able to protect 431

nigral neurons through the activation of immune- 432

based neuronal protection pathways linked to the 433

upregulation of IL-27 [68]. Further evidence was pro- 434

vided in a study carried out by Thome et al., who 435

found that ex vivo expansion of dysfunctional Tregs 436

restored suppressive function by diminishing multi- 437

ple pro-inflammatory pathways in myeloid cells and 438

inhibiting responder T cell proliferation [69]. Regard- 439

ing clinical trials, the subcutaneous administration 440

of sargramostim (a human recombinant GM-CSF) 441

at 6 �g/kg/day for 56 days, increased the numbers 442

of Tregs and determined modest improvement in the 443

UPDRS-III after 6 and 8 weeks of treatment when 444

compared with placebo [70]. Since some adverse 445

events were noticed, another study [71] explored 446

long-term sargramostim treatment at 3 �g/kg/day in 447

5 PD patients. Reductions in adverse events, as well 448

as an increase in peripheral blood Treg numbers, 449
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function, and hypomethylation of upstream FoxP3450

DNA elements, were observed. Furthermore, there451

was no worsening of motor function scores for any452

subject during the course of treatment. An alternative453

approach to enhance the Treg compartment is to iso-454

late and purify Tregs from peripheral blood, expand455

them in vitro, and administer autologous infusions of456

expanded Tregs, as reported in a recent phase I trial457

involving patients with amyotrophic lateral sclerosis458

[72]. Another feasible strategy could be represented459

by targeting T cells through immunosuppressant460

drugs, i.e., azathioprine. Azathioprine is a pro-drug461

of 6-mercaptopurine, a purine antagonist that inhibits462

leukocyte proliferation by interfering with nucleotide463

synthesis [73]. A phase 2 trial is currently exploring464

whether the suppression of the peripheral immune465

system using azathioprine has a disease-modifying466

effect in PD [74]. Additionally, glatiramer acetate,467

an FDA-approved treatment for multiple sclerosis468

which improves Th2 and Treg function, was inves-469

tigated as a potential disease-modifying treatment in470

PD: in the MPTP murine model, this compound was471

able to reverse motor dysfunction, promote the recov-472

ery of tyrosine hydroxylase protein expression in the473

striatum and the levels of brain derived neurotrophic474

factor, and reduce the microglial activation marker475

IBA1 [75].476

CONCLUSION477

The present review highlighted how the dysreg-478

ulation of central and peripheral T cells may play479

a key role in PD. Nonetheless, several unanswered480

questions remain: 1) Is the peripheral activation of481

T cells a primary event leading to neurodegenera-482

tion, or is it a secondary response caused by neuronal483

injury? 2) What is the exact relationship between the484

alteration of T cell subsets in the blood and the CNS485

of PD patients? 3) Which are the potential applica-486

tions of T cell changes as diagnostic and therapeutic487

biomarkers? 4) What is the role of genetic stratifica-488

tion in identifying PD subjects susceptible to T cell489

impairment and T cell-targeted therapies? Moreover,490

a thorough understanding of the role of PD medica-491

tion and the use of comparable methodologies (i.e.,492

use of standardized markers for the identification493

of T cell subsets) are warranted to avoid contra-494

dictory findings. If these issues will be correctly495

tackled, the modulation of T cell response could496

hopefully slow or even halt neuronal damage through497

the restoration of immune balance, thus providing498

new therapeutic avenues in the management of PD 499

patients. 500
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