

Approccio nutraceutico per promuovere un invecchiamento più salutare nell'organismo modello Caenorhabditits elegans

Roberta Pensotti¹, Barbara Sciandrone¹, Jacopo Maiocchi¹, Alessandro Palmioli¹, Cristina Airoldi¹ e Maria Elena Regonesi¹

¹Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, Piazza della Scienza 2, 20126 Milano.

Introduzione

un mondo caratterizzato da un progressivo invecchiamento demografico e in cui si prevede che entro il 2050 un quarto della popolazione Europea e Nord Americana sarà over sessanta, risulta fondamentale conoscere i meccanismi alla base dell'invecchiamento^{1,2}. La natura multifattoriale dell'aging ne complica la comprensione perché, oltre ai fattori genetici, quelli ambientali, come la nutrizione, giocano un ruolo chiave^{3,4}. C. elegans è un modello di invecchiamento accreditato, grazie al suo ciclo vitale breve, facilità di manipolazione e signaling pathway conservati⁵.

INVECCHIAMENTO

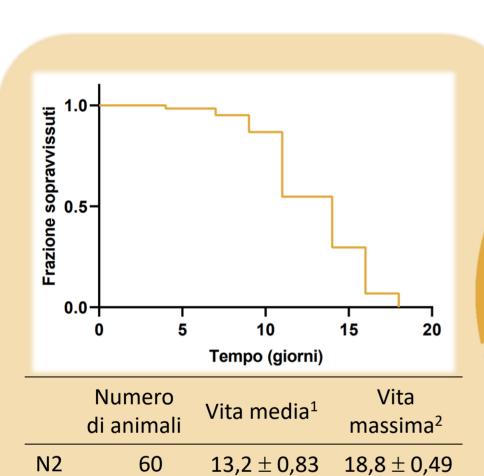
Caratterizzazione dell'invecchiamento di C. elegans dal punto di vista fenotipico e molecolare, con l'obiettivo di correlare i parametri fisiologici ai pathway di invecchiamento.

NUTRIZIONE

Studio dell'effetto dell'estratto naturale del bocciolo di Cinnamomum cassia sull'invecchiamento di C. elegans.

Mantenimento di C. elegans

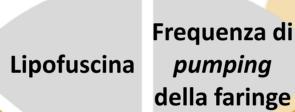
Il ceppo wild type N2 di C. elegans viene mantenuto a 20°C su piastre di terreno nematode growth medium solido con batteri E. coli OP50 come nutrimento⁶. Per gli esperimenti viene utilizzata una popolazione sincrona, così ottenuta: dieci vermi adulti depongono uova per 12 h, vengono poi rimossi e si lasciano schiudere le uova per 3 giorni. Tutti gli esperimenti sono condotti aggiungendo 5-Fluoro-2deossiuridina (FuDR) durante la prima settimana, per evitare la schiusa delle uova. Giorno 0= 1° giorno di età adulta.


Movimento

Resistenza

stress

termico

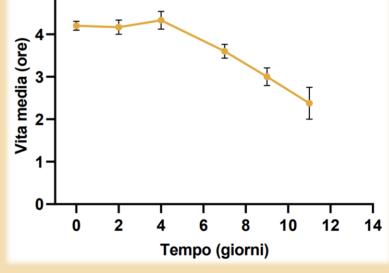

Risultati

¹Giorno in cui si ha il 50% dei sopravvissuti. ²Giorno raggiunto dall'ultimo sopravvissuto. È riportata media ± SEM.

Gli animali vengono contati e trasferiti ogni due giorni fino all'ultimo sopravvissuto.

Parametri di Healthspan

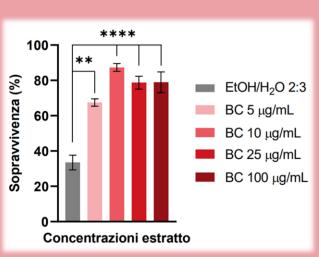
Lifespan


Specie reattive dell'ossigeno Resistenza stress

ossidativo

80 Body bends/min 60 20-2

La conta delle body bends del nematode mostra un progressivo declino del movimento durante la sopravvivenza sin dall'età di giovane adulto...


Tempo (giorni)

100-

contrario, la resistenza di C. elegans allo stress termico (37°C) diminuisce solo in tarda età.

Estratto del bocciolo di Cinnamomum cassia (BC): idroalcolico (acqua 70%, EtOH estratto 30%) arricchito in cinnamaldeide e procianidine⁷.

Determinazione della dose più efficace di estratto tramite stress termico (37°C), dopo pre-trattamento di animali al 1° giorno di età adulta con singola dose per 48 h. La vita media (h) degli animali non trattati è stata scelta come tempo in cui valutare possibili differenze di sopravvivenza.

Conclusioni

- Come atteso, entrambi i parametri fisiologici declinano durante la sopravvivenza di C. elegans, ma in tempi diversi. Questo ci porta a ipotizzare che siano regolati da pathway diversi.
- L'estratto del bocciolo di cannella migliora la resistenza allo stress termico a basse concentrazioni (5-10 μg/mL), raggiungendo un plateau a concentrazioni più elevate (25-100 μg/mL).

IN FUTURO:

- Resistenza stress ossidativo
- Accumulo ROS
- Frequenza di pumping della faringe

Accumulo lipofuscina

- Pathway
- invecchiamento

IN FUTURO:

- 1. Sopravvivenza
- Analisi degli altri parametri di healthspan
- Pathway invecchiamento (utilizzo mutanti)

5. Zhang et al., Frontiers in Endocrinology 11 (2020).

6. Brenner, S. (1974), Genetics. 7. Ciaramelli et al.,, Frontiers in chemistry (2022).

^{1.} UNDESA Population Division (2015).

^{2.} Huang et al., Proceedings of the National Academy of Sciences 101.21 (2004).

^{3.} Dabrowska et al., Cells 11.9 (2022).

^{4.} Okoro et al., Molecules 26.23 (2021).